Strachey’s General Purpose Macrogenerator
Andrew Herbert

8th May 2014

Introduction

As part of my on-going project to resurrect Elliott 903 software I regularly
receive files from Terry Froggatt containing copies of paper tapes from his large
collection. In one of the more recent batches there was a SIR assembly code tape
labelled “GPM10 9/5/77,900-Series Telecode” [1] and I guessed, correctly as it
turned out, that this might be an implementation of Christopher Strachey’s
General Purpose Macrogenerator (GPM). This article gives an account of GPM; of
errors found in the Computer Journal paper describing its use [2]; a fatal flaw in
the implementation given by the same paper; and an improved version of GPM
developed fixing both problems.

GPM

GPM was a well-known and popular macro generator dating from the early
1960’s. GPM was initially conceived by Christopher Strachey when working as
part of the Cambridge team designing the CPL programming language for the
then new Cambridge Titan computer. Strachey proposed GPM as a tool to be
used as an intermediate language for the compiler. The idea was to translate CPL
into GPM macro calls that would in turn be expanded into machine code.
According to David Hartley this didn’t work too well in practice - GPM was a
more powerful tool than required for the task and was too easily abused,
resulting in impenetrable code.

The GPM notation is deceptively simple. A string such as:
§DEF,Plus,<ADD ~1 ~2>;

introduces a new macro “Plus” which when called with two arguments, A and B
say, would generate:

ADD A B
Such a call would be written:
§P1lus, A, B;
The symbols § and ; delimit a macro call. DEF is a built-in macro that defines

its second argument as having the value of its third argument. Commas separate
the arguments of the call.

The symbol ~ followed by a digit n substitutes the n-th argument of the current
macro, if any. ~@ substitutes the macro name.

The symbols < and > are used to “quote” text - i.e., to stop it being expanded by
the macroprocessor. The symbols are stripped off as the text it read, this in the
definition of Plus, the macro body is quoted to prevent argument substitution,
but when P lus is called, the quotes are missing and so argument substitution
occurs.

The notation is completely general: macro definitions can be nested, arguments
can include macro calls (including calls to DEF), quotes can be nested, etc, etc.
There are a handful of built-in macros: DEF to define a new macro, UPDATE to
replace a macro definition with a new body, BIN to convert a textual
representation of an integer to binary form, DEC to convert a binary integer to an
textual one and BAR which allows simple arithmetic on binary quantities. There
is also a macro §VAL , name; that returns the unevaluated string bound to name
as its result.

These simple facilities are sufficient to write quite complex programs. Here for
example is a conditional:

§A, §DEF,A,<X>; 8§DEF,B,<Y>;;

This defines A to be <X>, then B to be <Y> and then immediately evaluates §A. If
A=B the resultis Y, otherwise the result is X. Thus we have a template for

if A=B then X else Y
From this we can progress to more exotic forms such as:
§DEF, Succ<0,1,2,3,4,5,6,7,8,9,10,8DEF, 1, <~>~1; ;>;

The effect of a call such as §Succ, 3; is to make a temporary definition of a
macro 1 and defining string ~3 and then call it with the arguments
2,3,4,...10, producing the result 4. So, the effect of §Succ,r; where
0<r<10 is to calculate the numerical successor of r.

There are further subtleties to do with how GPM handles superfluous arguments
and the interplay between permanent and temporary macro definition for which
the reader should refer to Strachey’s paper.

The reader can perhaps start to see the veracity of David Hartley’s observation
the GPM is perhaps too clever for its own good. That said, GPM was of
considerable interest during its time as an object of academic study and is
acknowledged as an important ancestor of the m4 macro generator used by Unix
systems today.

Bugs

In his paper on GPM, Strachey develops a more complicated successor function
§Successor,a,b,c;
that computes the c-th successor to the two digit number ab.

The definition is given as:

§DEF,Successor,<8§~2, §DEF,~2,~1<, §Suc,>~2<;>;
§DEF,9,<8§Suc,>~1<;,0>; ;>;

but, when given to GPM10, the macro failed to work as expected and pulling on
this loose thread unravelled spectacularly. To work correctly the definition
should have been:

§DEF,Successor,<§~2,§DEF,~2,~1<,>8§Suc,>~2<;>;
§DEF,9,<8Suc,>~1<;<,>0>;>;

i.e., with some of the commas quoted, otherwise DEF is called with too many
arguments and the wrong result produced.

This error was probably a simple transcription error from Strachey’s original to
the final typeset paper. Such errors are far less likely these days when we can
cut and paste from program files to camera-ready copy.

At first, when I found the GPM10 program wouldn’t produce the expected result
from the Successor macro, I suspected a bug in the code. Careful checking
revealed the SIR code was a correct transcription of the CPL code given in the
original paper, so then I began to doubt the CPL, especially as Strachey notes in
the paper that the GPM implementation used at Cambridge was different to that
specified in the paper. This led me to search the World Wide Web to see if there
were other implementations of GPM still extant. I discovered just one, in BCPL,
maintained by Martin Richards, a now retired lecturer from the Cambridge
University Computer Laboratory, a former colleague from my own time at
Cambridge.

[learned that Richards had been Strachey’s PhD student, hence his interest in
GPM. Most readers will know Richards wrote BCPL as a simplified version of
CPL while visiting MIT in the early '60s; that BCPL was a popular systems
programming language in the '60s, '70s and '80s; and is an ancestor of C.
Richards continues to maintain BCPL [3] and in his collection of BCPL examples
there was a program bgpm that claimed to be an implementation of GPM.
Frustratingly bgpm also wouldn’t run the Successor macro and worryingly
GPM10 wouldn’t run many of the test cases for bgpm. This led me to change
tactics and code up my own Successor macro and in so doing I found the error
in the original.

Looking at the bgpm it was apparent Richard’s program was a different
algorithm to Strachey’s. In particular Strachey’s CPL uses a single stack to

evaluate macros and puts temporary macros on that stack using a linked list to
maintain an environment chain that can be scanned to find the most recent
definition of a given name. Richards by contrast uses two stacks - one for macro
evaluation and a second for temporary definitions. I contacted Richards and he
explained there was a fatal flaw in Strachey’s algorithm: the special markers
used to delineate environment chain information could be left on the evaluation
stack after a call of DEF and give rise to errors. (Strachey indirectly
acknowledges this in section 2.6 of his paper). By using a separate stack for the
environment, Richards sidestepped the problem. However, in changing the data
structures, Richards had inadvertently changed the binding rules for temporary
macros and this is what led to his examples not running on GPM10 and my
proposed correction to Strachey’s Successor macro not running on bgpm.

Following our discussion Richards wrote a BCPL equivalent of the CPL version in
Strachey’s paper. With this program, which included a useful backtrace facility
and better error reporting that GPM10 I was able to confirm the error in
Successor and its correction.

bgpm Evolution

Following on from writing the BCPL version of Strachey’s algorithm, Richards
went back and updated bgpm to handle temporary macros identically to
Strachey, but importantly still with two stacks, so that problems with
environment chain markers couldn’t arise. This version thus correctly expands
all of Strachey’s examples and, with some minor recoding, all of Richards’
examples (including those which would have crashed Strachey’s original due the
environment chain marker problem).

Richards bgpm contains several other improvements. In particular arithmetic is
handled by a macro eval that understands simple numerical expressions. Thus

§DEF,x,1; ... SUPDATE,X, §8BAR,+,8VAL,x;,8BIN,1;;;;
becomes:
[def\x\1] ... [set\x\[eval\[x]+1]]

(Richards uses different delimiter symbols better suited to the ASCII character
set.)

Richards’ form is easier to read and importantly avoid the risk of leaving
arbitrary binary values on the evaluation stack which might confuse the scanner
(as does indeed occur with Strachey’s algorithm if certain negative numbers are
computed).

Two new macros Llquote and rquote are provided that allow left and right
quotes to be generated in the output stream, a completeness feature curiously
missing from Strachey’s original.

Argument naming is also tightened up. A ~ can be followed by any integer
allowing arbitrary numbers of arguments, whereas in Strachey’s GPM argument
numbers greater than 9 had to be encoded using the symbols that followed digit
9 in the Titan character code, which is obscure.

Perhaps most importantly of all, bgpm allows comments to be inserted in GPM
input. A " (grave) symbol causes the scanner to skip all remaining text on the
current line and continue to skip white space until some other symbol is found.
This is valuable in allowing complex macros to be documented inline and layout
be used to improve readability without impacting adversely on the layout of the
output.

Elliott 903 GPM

Having resolved the problems running Strachey’s examples and working with
Richards on the convergence of bgpm and Strachey’s semantics, I wrote a
translation of bgpm in SIR as a replacement for GPM10 and this is available from
my Elliott 900 series software and documents archive to any who might be
interested. (Writing a 903 code generator for BCPL is a project for another day).

The origins of GPM10 itself are unclear: it was not issued by Elliotts: there were
GPM like facilities in the Elliott MASIR (macro SIR) assembler, but not the
complete set. And, indeed why GPM107? I recall there being a GPM program for
the 903 at Leeds University when I was a student there from 1972-5. The GPM10
tape however is dated 1997. I could easily imagine there were several versions
in circulation at various times given the popularity of GPM in those days and the
suitability of implementing GPM as a final year student project. If any CCS
member can shed further light on these matters I'd be pleased to hear from
them.

Summary

An early and influential macro generator has been preserved! with two
implementations, one in Elliott SIR, the other in BCPL, which although now a
vintage programing language, is still supported on most current operating
systems including, most recently, the Raspberry Pi. During the preservation a
number of bugs in the implementation and illustrative examples have been
corrected, offering a much-improved version for the modern user. The
Computer Journal has published a record of the errors on its web site.

References

[1] GPM10 can be found in the archive of Elliott software and documentation at:
http://homepage.ntlworld.com/andrew.herbert1/andrew_herbert/elliott.html.

1 Taking David Holdsworth'’s definition of “software preservation,” namely being
able to run the software on current platforms.

[2] “General Purpose Macrogenerator”, C.J. Strachey, The Computer Journal
(1965) 8 (3): 225-241.

[3] bgpm and bgpmcj can both be downloaded from:
http://www.cl.cam.ac.uk/~mr10/BCPL.html.

